Evaluate
\frac{4}{x}
Differentiate w.r.t. x
-\frac{4}{x^{2}}
Graph
Share
Copied to clipboard
\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2}
Factor x^{2}+2x.
\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x is x\left(x+2\right). Multiply \frac{2}{x} times \frac{x+2}{x+2}.
\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
Since \frac{12}{x\left(x+2\right)} and \frac{2\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2}
Do the multiplications in 12-2\left(x+2\right).
\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2}
Combine like terms in 12-2x-4.
\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x+2 is x\left(x+2\right). Multiply \frac{6}{x+2} times \frac{x}{x}.
\frac{8-2x+6x}{x\left(x+2\right)}
Since \frac{8-2x}{x\left(x+2\right)} and \frac{6x}{x\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{8+4x}{x\left(x+2\right)}
Combine like terms in 8-2x+6x.
\frac{4\left(x+2\right)}{x\left(x+2\right)}
Factor the expressions that are not already factored in \frac{8+4x}{x\left(x+2\right)}.
\frac{4}{x}
Cancel out x+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2})
Factor x^{2}+2x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x is x\left(x+2\right). Multiply \frac{2}{x} times \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
Since \frac{12}{x\left(x+2\right)} and \frac{2\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2})
Do the multiplications in 12-2\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2})
Combine like terms in 12-2x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x+2 is x\left(x+2\right). Multiply \frac{6}{x+2} times \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x+6x}{x\left(x+2\right)})
Since \frac{8-2x}{x\left(x+2\right)} and \frac{6x}{x\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8+4x}{x\left(x+2\right)})
Combine like terms in 8-2x+6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{x\left(x+2\right)})
Factor the expressions that are not already factored in \frac{8+4x}{x\left(x+2\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{x})
Cancel out x+2 in both numerator and denominator.
-4x^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-4x^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}