Evaluate
\frac{6503}{550}\approx 11.823636364
Factor
\frac{7 \cdot 929}{2 \cdot 5 ^ {2} \cdot 11} = 11\frac{453}{550} = 11.823636363636364
Share
Copied to clipboard
\begin{array}{l}\phantom{9900)}\phantom{1}\\9900\overline{)117054}\\\end{array}
Use the 1^{st} digit 1 from dividend 117054
\begin{array}{l}\phantom{9900)}0\phantom{2}\\9900\overline{)117054}\\\end{array}
Since 1 is less than 9900, use the next digit 1 from dividend 117054 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}0\phantom{3}\\9900\overline{)117054}\\\end{array}
Use the 2^{nd} digit 1 from dividend 117054
\begin{array}{l}\phantom{9900)}00\phantom{4}\\9900\overline{)117054}\\\end{array}
Since 11 is less than 9900, use the next digit 7 from dividend 117054 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}00\phantom{5}\\9900\overline{)117054}\\\end{array}
Use the 3^{rd} digit 7 from dividend 117054
\begin{array}{l}\phantom{9900)}000\phantom{6}\\9900\overline{)117054}\\\end{array}
Since 117 is less than 9900, use the next digit 0 from dividend 117054 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}000\phantom{7}\\9900\overline{)117054}\\\end{array}
Use the 4^{th} digit 0 from dividend 117054
\begin{array}{l}\phantom{9900)}0000\phantom{8}\\9900\overline{)117054}\\\end{array}
Since 1170 is less than 9900, use the next digit 5 from dividend 117054 and add 0 to the quotient
\begin{array}{l}\phantom{9900)}0000\phantom{9}\\9900\overline{)117054}\\\end{array}
Use the 5^{th} digit 5 from dividend 117054
\begin{array}{l}\phantom{9900)}00001\phantom{10}\\9900\overline{)117054}\\\phantom{9900)}\underline{\phantom{9}9900\phantom{9}}\\\phantom{9900)9}1805\\\end{array}
Find closest multiple of 9900 to 11705. We see that 1 \times 9900 = 9900 is the nearest. Now subtract 9900 from 11705 to get reminder 1805. Add 1 to quotient.
\begin{array}{l}\phantom{9900)}00001\phantom{11}\\9900\overline{)117054}\\\phantom{9900)}\underline{\phantom{9}9900\phantom{9}}\\\phantom{9900)9}18054\\\end{array}
Use the 6^{th} digit 4 from dividend 117054
\begin{array}{l}\phantom{9900)}000011\phantom{12}\\9900\overline{)117054}\\\phantom{9900)}\underline{\phantom{9}9900\phantom{9}}\\\phantom{9900)9}18054\\\phantom{9900)}\underline{\phantom{99}9900\phantom{}}\\\phantom{9900)99}8154\\\end{array}
Find closest multiple of 9900 to 18054. We see that 1 \times 9900 = 9900 is the nearest. Now subtract 9900 from 18054 to get reminder 8154. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }8154
Since 8154 is less than 9900, stop the division. The reminder is 8154. The topmost line 000011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}