Evaluate
\frac{115}{112}\approx 1.026785714
Factor
\frac{5 \cdot 23}{2 ^ {4} \cdot 7} = 1\frac{3}{112} = 1.0267857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{112)}\phantom{1}\\112\overline{)115}\\\end{array}
Use the 1^{st} digit 1 from dividend 115
\begin{array}{l}\phantom{112)}0\phantom{2}\\112\overline{)115}\\\end{array}
Since 1 is less than 112, use the next digit 1 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{112)}0\phantom{3}\\112\overline{)115}\\\end{array}
Use the 2^{nd} digit 1 from dividend 115
\begin{array}{l}\phantom{112)}00\phantom{4}\\112\overline{)115}\\\end{array}
Since 11 is less than 112, use the next digit 5 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{112)}00\phantom{5}\\112\overline{)115}\\\end{array}
Use the 3^{rd} digit 5 from dividend 115
\begin{array}{l}\phantom{112)}001\phantom{6}\\112\overline{)115}\\\phantom{112)}\underline{\phantom{}112\phantom{}}\\\phantom{112)99}3\\\end{array}
Find closest multiple of 112 to 115. We see that 1 \times 112 = 112 is the nearest. Now subtract 112 from 115 to get reminder 3. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3
Since 3 is less than 112, stop the division. The reminder is 3. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}