Evaluate
\frac{1122}{545}\approx 2.058715596
Factor
\frac{2 \cdot 3 \cdot 11 \cdot 17}{5 \cdot 109} = 2\frac{32}{545} = 2.0587155963302752
Share
Copied to clipboard
\begin{array}{l}\phantom{545)}\phantom{1}\\545\overline{)1122}\\\end{array}
Use the 1^{st} digit 1 from dividend 1122
\begin{array}{l}\phantom{545)}0\phantom{2}\\545\overline{)1122}\\\end{array}
Since 1 is less than 545, use the next digit 1 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{545)}0\phantom{3}\\545\overline{)1122}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1122
\begin{array}{l}\phantom{545)}00\phantom{4}\\545\overline{)1122}\\\end{array}
Since 11 is less than 545, use the next digit 2 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{545)}00\phantom{5}\\545\overline{)1122}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1122
\begin{array}{l}\phantom{545)}000\phantom{6}\\545\overline{)1122}\\\end{array}
Since 112 is less than 545, use the next digit 2 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{545)}000\phantom{7}\\545\overline{)1122}\\\end{array}
Use the 4^{th} digit 2 from dividend 1122
\begin{array}{l}\phantom{545)}0002\phantom{8}\\545\overline{)1122}\\\phantom{545)}\underline{\phantom{}1090\phantom{}}\\\phantom{545)99}32\\\end{array}
Find closest multiple of 545 to 1122. We see that 2 \times 545 = 1090 is the nearest. Now subtract 1090 from 1122 to get reminder 32. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }32
Since 32 is less than 545, stop the division. The reminder is 32. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}