Evaluate
\frac{1104}{175}\approx 6.308571429
Factor
\frac{2 ^ {4} \cdot 3 \cdot 23}{5 ^ {2} \cdot 7} = 6\frac{54}{175} = 6.308571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{175)}\phantom{1}\\175\overline{)1104}\\\end{array}
Use the 1^{st} digit 1 from dividend 1104
\begin{array}{l}\phantom{175)}0\phantom{2}\\175\overline{)1104}\\\end{array}
Since 1 is less than 175, use the next digit 1 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{175)}0\phantom{3}\\175\overline{)1104}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1104
\begin{array}{l}\phantom{175)}00\phantom{4}\\175\overline{)1104}\\\end{array}
Since 11 is less than 175, use the next digit 0 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{175)}00\phantom{5}\\175\overline{)1104}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1104
\begin{array}{l}\phantom{175)}000\phantom{6}\\175\overline{)1104}\\\end{array}
Since 110 is less than 175, use the next digit 4 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{175)}000\phantom{7}\\175\overline{)1104}\\\end{array}
Use the 4^{th} digit 4 from dividend 1104
\begin{array}{l}\phantom{175)}0006\phantom{8}\\175\overline{)1104}\\\phantom{175)}\underline{\phantom{}1050\phantom{}}\\\phantom{175)99}54\\\end{array}
Find closest multiple of 175 to 1104. We see that 6 \times 175 = 1050 is the nearest. Now subtract 1050 from 1104 to get reminder 54. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }54
Since 54 is less than 175, stop the division. The reminder is 54. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}