Evaluate
\frac{55}{8}=6.875
Factor
\frac{5 \cdot 11}{2 ^ {3}} = 6\frac{7}{8} = 6.875
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)1100}\\\end{array}
Use the 1^{st} digit 1 from dividend 1100
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)1100}\\\end{array}
Since 1 is less than 160, use the next digit 1 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)1100}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1100
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)1100}\\\end{array}
Since 11 is less than 160, use the next digit 0 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)1100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1100
\begin{array}{l}\phantom{160)}000\phantom{6}\\160\overline{)1100}\\\end{array}
Since 110 is less than 160, use the next digit 0 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{160)}000\phantom{7}\\160\overline{)1100}\\\end{array}
Use the 4^{th} digit 0 from dividend 1100
\begin{array}{l}\phantom{160)}0006\phantom{8}\\160\overline{)1100}\\\phantom{160)}\underline{\phantom{9}960\phantom{}}\\\phantom{160)9}140\\\end{array}
Find closest multiple of 160 to 1100. We see that 6 \times 160 = 960 is the nearest. Now subtract 960 from 1100 to get reminder 140. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }140
Since 140 is less than 160, stop the division. The reminder is 140. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}