Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\frac{11}{8}-\left(\frac{5}{12}-\frac{3}{12}\right)+\frac{5}{8}
Least common multiple of 12 and 4 is 12. Convert \frac{5}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{11}{8}-\frac{5-3}{12}+\frac{5}{8}
Since \frac{5}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{8}-\frac{2}{12}+\frac{5}{8}
Subtract 3 from 5 to get 2.
\frac{11}{8}-\frac{1}{6}+\frac{5}{8}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{33}{24}-\frac{4}{24}+\frac{5}{8}
Least common multiple of 8 and 6 is 24. Convert \frac{11}{8} and \frac{1}{6} to fractions with denominator 24.
\frac{33-4}{24}+\frac{5}{8}
Since \frac{33}{24} and \frac{4}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{29}{24}+\frac{5}{8}
Subtract 4 from 33 to get 29.
\frac{29}{24}+\frac{15}{24}
Least common multiple of 24 and 8 is 24. Convert \frac{29}{24} and \frac{5}{8} to fractions with denominator 24.
\frac{29+15}{24}
Since \frac{29}{24} and \frac{15}{24} have the same denominator, add them by adding their numerators.
\frac{44}{24}
Add 29 and 15 to get 44.
\frac{11}{6}
Reduce the fraction \frac{44}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}