Verify
false
Share
Copied to clipboard
\frac{11\times 31}{34\times 41}+\frac{11}{10}\times \frac{7}{21}=\frac{19}{41}
Multiply \frac{11}{34} times \frac{31}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{341}{1394}+\frac{11}{10}\times \frac{7}{21}=\frac{19}{41}
Do the multiplications in the fraction \frac{11\times 31}{34\times 41}.
\frac{341}{1394}+\frac{11}{10}\times \frac{1}{3}=\frac{19}{41}
Reduce the fraction \frac{7}{21} to lowest terms by extracting and canceling out 7.
\frac{341}{1394}+\frac{11\times 1}{10\times 3}=\frac{19}{41}
Multiply \frac{11}{10} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{341}{1394}+\frac{11}{30}=\frac{19}{41}
Do the multiplications in the fraction \frac{11\times 1}{10\times 3}.
\frac{5115}{20910}+\frac{7667}{20910}=\frac{19}{41}
Least common multiple of 1394 and 30 is 20910. Convert \frac{341}{1394} and \frac{11}{30} to fractions with denominator 20910.
\frac{5115+7667}{20910}=\frac{19}{41}
Since \frac{5115}{20910} and \frac{7667}{20910} have the same denominator, add them by adding their numerators.
\frac{12782}{20910}=\frac{19}{41}
Add 5115 and 7667 to get 12782.
\frac{6391}{10455}=\frac{19}{41}
Reduce the fraction \frac{12782}{20910} to lowest terms by extracting and canceling out 2.
\frac{6391}{10455}=\frac{4845}{10455}
Least common multiple of 10455 and 41 is 10455. Convert \frac{6391}{10455} and \frac{19}{41} to fractions with denominator 10455.
\text{false}
Compare \frac{6391}{10455} and \frac{4845}{10455}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}