Evaluate
\frac{103}{24}\approx 4.291666667
Factor
\frac{103}{2 ^ {3} \cdot 3} = 4\frac{7}{24} = 4.291666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)103}\\\end{array}
Use the 1^{st} digit 1 from dividend 103
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)103}\\\end{array}
Since 1 is less than 24, use the next digit 0 from dividend 103 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)103}\\\end{array}
Use the 2^{nd} digit 0 from dividend 103
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)103}\\\end{array}
Since 10 is less than 24, use the next digit 3 from dividend 103 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)103}\\\end{array}
Use the 3^{rd} digit 3 from dividend 103
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)103}\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)99}7\\\end{array}
Find closest multiple of 24 to 103. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 103 to get reminder 7. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }7
Since 7 is less than 24, stop the division. The reminder is 7. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}