Evaluate
\frac{102665556}{45500551}\approx 2.256358522
Factor
\frac{2 ^ {2} \cdot 3 ^ {5} \cdot 7 \cdot 79 \cdot 191}{17 \cdot 1033 \cdot 2591} = 2\frac{11664454}{45500551} = 2.2563585219000974
Share
Copied to clipboard
\begin{array}{l}\phantom{45500551)}\phantom{1}\\45500551\overline{)102665556}\\\end{array}
Use the 1^{st} digit 1 from dividend 102665556
\begin{array}{l}\phantom{45500551)}0\phantom{2}\\45500551\overline{)102665556}\\\end{array}
Since 1 is less than 45500551, use the next digit 0 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}0\phantom{3}\\45500551\overline{)102665556}\\\end{array}
Use the 2^{nd} digit 0 from dividend 102665556
\begin{array}{l}\phantom{45500551)}00\phantom{4}\\45500551\overline{)102665556}\\\end{array}
Since 10 is less than 45500551, use the next digit 2 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}00\phantom{5}\\45500551\overline{)102665556}\\\end{array}
Use the 3^{rd} digit 2 from dividend 102665556
\begin{array}{l}\phantom{45500551)}000\phantom{6}\\45500551\overline{)102665556}\\\end{array}
Since 102 is less than 45500551, use the next digit 6 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}000\phantom{7}\\45500551\overline{)102665556}\\\end{array}
Use the 4^{th} digit 6 from dividend 102665556
\begin{array}{l}\phantom{45500551)}0000\phantom{8}\\45500551\overline{)102665556}\\\end{array}
Since 1026 is less than 45500551, use the next digit 6 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}0000\phantom{9}\\45500551\overline{)102665556}\\\end{array}
Use the 5^{th} digit 6 from dividend 102665556
\begin{array}{l}\phantom{45500551)}00000\phantom{10}\\45500551\overline{)102665556}\\\end{array}
Since 10266 is less than 45500551, use the next digit 5 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}00000\phantom{11}\\45500551\overline{)102665556}\\\end{array}
Use the 6^{th} digit 5 from dividend 102665556
\begin{array}{l}\phantom{45500551)}000000\phantom{12}\\45500551\overline{)102665556}\\\end{array}
Since 102665 is less than 45500551, use the next digit 5 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}000000\phantom{13}\\45500551\overline{)102665556}\\\end{array}
Use the 7^{th} digit 5 from dividend 102665556
\begin{array}{l}\phantom{45500551)}0000000\phantom{14}\\45500551\overline{)102665556}\\\end{array}
Since 1026655 is less than 45500551, use the next digit 5 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}0000000\phantom{15}\\45500551\overline{)102665556}\\\end{array}
Use the 8^{th} digit 5 from dividend 102665556
\begin{array}{l}\phantom{45500551)}00000000\phantom{16}\\45500551\overline{)102665556}\\\end{array}
Since 10266555 is less than 45500551, use the next digit 6 from dividend 102665556 and add 0 to the quotient
\begin{array}{l}\phantom{45500551)}00000000\phantom{17}\\45500551\overline{)102665556}\\\end{array}
Use the 9^{th} digit 6 from dividend 102665556
\begin{array}{l}\phantom{45500551)}000000002\phantom{18}\\45500551\overline{)102665556}\\\phantom{45500551)}\underline{\phantom{9}91001102\phantom{}}\\\phantom{45500551)9}11664454\\\end{array}
Find closest multiple of 45500551 to 102665556. We see that 2 \times 45500551 = 91001102 is the nearest. Now subtract 91001102 from 102665556 to get reminder 11664454. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }11664454
Since 11664454 is less than 45500551, stop the division. The reminder is 11664454. The topmost line 000000002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}