Evaluate
\frac{10155}{14}\approx 725.357142857
Factor
\frac{3 \cdot 5 \cdot 677}{2 \cdot 7} = 725\frac{5}{14} = 725.3571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)10155}\\\end{array}
Use the 1^{st} digit 1 from dividend 10155
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)10155}\\\end{array}
Since 1 is less than 14, use the next digit 0 from dividend 10155 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)10155}\\\end{array}
Use the 2^{nd} digit 0 from dividend 10155
\begin{array}{l}\phantom{14)}00\phantom{4}\\14\overline{)10155}\\\end{array}
Since 10 is less than 14, use the next digit 1 from dividend 10155 and add 0 to the quotient
\begin{array}{l}\phantom{14)}00\phantom{5}\\14\overline{)10155}\\\end{array}
Use the 3^{rd} digit 1 from dividend 10155
\begin{array}{l}\phantom{14)}007\phantom{6}\\14\overline{)10155}\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)99}3\\\end{array}
Find closest multiple of 14 to 101. We see that 7 \times 14 = 98 is the nearest. Now subtract 98 from 101 to get reminder 3. Add 7 to quotient.
\begin{array}{l}\phantom{14)}007\phantom{7}\\14\overline{)10155}\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)99}35\\\end{array}
Use the 4^{th} digit 5 from dividend 10155
\begin{array}{l}\phantom{14)}0072\phantom{8}\\14\overline{)10155}\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)99}35\\\phantom{14)}\underline{\phantom{99}28\phantom{9}}\\\phantom{14)999}7\\\end{array}
Find closest multiple of 14 to 35. We see that 2 \times 14 = 28 is the nearest. Now subtract 28 from 35 to get reminder 7. Add 2 to quotient.
\begin{array}{l}\phantom{14)}0072\phantom{9}\\14\overline{)10155}\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)99}35\\\phantom{14)}\underline{\phantom{99}28\phantom{9}}\\\phantom{14)999}75\\\end{array}
Use the 5^{th} digit 5 from dividend 10155
\begin{array}{l}\phantom{14)}00725\phantom{10}\\14\overline{)10155}\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)99}35\\\phantom{14)}\underline{\phantom{99}28\phantom{9}}\\\phantom{14)999}75\\\phantom{14)}\underline{\phantom{999}70\phantom{}}\\\phantom{14)9999}5\\\end{array}
Find closest multiple of 14 to 75. We see that 5 \times 14 = 70 is the nearest. Now subtract 70 from 75 to get reminder 5. Add 5 to quotient.
\text{Quotient: }725 \text{Reminder: }5
Since 5 is less than 14, stop the division. The reminder is 5. The topmost line 00725 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 725.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}