Evaluate
\frac{1000}{373}\approx 2.680965147
Factor
\frac{2 ^ {3} \cdot 5 ^ {3}}{373} = 2\frac{254}{373} = 2.680965147453083
Share
Copied to clipboard
\begin{array}{l}\phantom{373)}\phantom{1}\\373\overline{)1000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000
\begin{array}{l}\phantom{373)}0\phantom{2}\\373\overline{)1000}\\\end{array}
Since 1 is less than 373, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{373)}0\phantom{3}\\373\overline{)1000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000
\begin{array}{l}\phantom{373)}00\phantom{4}\\373\overline{)1000}\\\end{array}
Since 10 is less than 373, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{373)}00\phantom{5}\\373\overline{)1000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000
\begin{array}{l}\phantom{373)}000\phantom{6}\\373\overline{)1000}\\\end{array}
Since 100 is less than 373, use the next digit 0 from dividend 1000 and add 0 to the quotient
\begin{array}{l}\phantom{373)}000\phantom{7}\\373\overline{)1000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1000
\begin{array}{l}\phantom{373)}0002\phantom{8}\\373\overline{)1000}\\\phantom{373)}\underline{\phantom{9}746\phantom{}}\\\phantom{373)9}254\\\end{array}
Find closest multiple of 373 to 1000. We see that 2 \times 373 = 746 is the nearest. Now subtract 746 from 1000 to get reminder 254. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }254
Since 254 is less than 373, stop the division. The reminder is 254. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}