Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1000}{\sqrt{\frac{125}{18}+\frac{2500}{\frac{20.17}{2}}}}
Reduce the fraction \frac{500}{72} to lowest terms by extracting and canceling out 4.
\frac{1000}{\sqrt{\frac{125}{18}+\frac{2500\times 2}{20.17}}}
Divide 2500 by \frac{20.17}{2} by multiplying 2500 by the reciprocal of \frac{20.17}{2}.
\frac{1000}{\sqrt{\frac{125}{18}+\frac{5000}{20.17}}}
Multiply 2500 and 2 to get 5000.
\frac{1000}{\sqrt{\frac{125}{18}+\frac{500000}{2017}}}
Expand \frac{5000}{20.17} by multiplying both numerator and the denominator by 100.
\frac{1000}{\sqrt{\frac{252125}{36306}+\frac{9000000}{36306}}}
Least common multiple of 18 and 2017 is 36306. Convert \frac{125}{18} and \frac{500000}{2017} to fractions with denominator 36306.
\frac{1000}{\sqrt{\frac{252125+9000000}{36306}}}
Since \frac{252125}{36306} and \frac{9000000}{36306} have the same denominator, add them by adding their numerators.
\frac{1000}{\sqrt{\frac{9252125}{36306}}}
Add 252125 and 9000000 to get 9252125.
\frac{1000}{\frac{\sqrt{9252125}}{\sqrt{36306}}}
Rewrite the square root of the division \sqrt{\frac{9252125}{36306}} as the division of square roots \frac{\sqrt{9252125}}{\sqrt{36306}}.
\frac{1000}{\frac{5\sqrt{370085}}{\sqrt{36306}}}
Factor 9252125=5^{2}\times 370085. Rewrite the square root of the product \sqrt{5^{2}\times 370085} as the product of square roots \sqrt{5^{2}}\sqrt{370085}. Take the square root of 5^{2}.
\frac{1000}{\frac{5\sqrt{370085}}{3\sqrt{4034}}}
Factor 36306=3^{2}\times 4034. Rewrite the square root of the product \sqrt{3^{2}\times 4034} as the product of square roots \sqrt{3^{2}}\sqrt{4034}. Take the square root of 3^{2}.
\frac{1000}{\frac{5\sqrt{370085}\sqrt{4034}}{3\left(\sqrt{4034}\right)^{2}}}
Rationalize the denominator of \frac{5\sqrt{370085}}{3\sqrt{4034}} by multiplying numerator and denominator by \sqrt{4034}.
\frac{1000}{\frac{5\sqrt{370085}\sqrt{4034}}{3\times 4034}}
The square of \sqrt{4034} is 4034.
\frac{1000}{\frac{5\sqrt{1492922890}}{3\times 4034}}
To multiply \sqrt{370085} and \sqrt{4034}, multiply the numbers under the square root.
\frac{1000}{\frac{5\sqrt{1492922890}}{12102}}
Multiply 3 and 4034 to get 12102.
\frac{1000\times 12102}{5\sqrt{1492922890}}
Divide 1000 by \frac{5\sqrt{1492922890}}{12102} by multiplying 1000 by the reciprocal of \frac{5\sqrt{1492922890}}{12102}.
\frac{200\times 12102}{\sqrt{1492922890}}
Cancel out 5 in both numerator and denominator.
\frac{200\times 12102\sqrt{1492922890}}{\left(\sqrt{1492922890}\right)^{2}}
Rationalize the denominator of \frac{200\times 12102}{\sqrt{1492922890}} by multiplying numerator and denominator by \sqrt{1492922890}.
\frac{200\times 12102\sqrt{1492922890}}{1492922890}
The square of \sqrt{1492922890} is 1492922890.
\frac{2420400\sqrt{1492922890}}{1492922890}
Multiply 200 and 12102 to get 2420400.
\frac{120}{74017}\sqrt{1492922890}
Divide 2420400\sqrt{1492922890} by 1492922890 to get \frac{120}{74017}\sqrt{1492922890}.