\frac{ 100-99 }{ 99-81 } = \frac{ 100- { t }_{ 0 } }{ { t }_{ 0 } -83 }
Solve for t_0
t_{0} = \frac{1883}{19} = 99\frac{2}{19} \approx 99.105263158
Share
Copied to clipboard
\left(\frac{1}{18}t_{0}-\frac{83}{18}\right)\left(100-99\right)=100-t_{0}
Variable t_{0} cannot be equal to 83 since division by zero is not defined. Multiply both sides of the equation by t_{0}-83.
\left(\frac{1}{18}t_{0}-\frac{83}{18}\right)\times 1=100-t_{0}
Subtract 99 from 100 to get 1.
\frac{1}{18}t_{0}-\frac{83}{18}=100-t_{0}
Use the distributive property to multiply \frac{1}{18}t_{0}-\frac{83}{18} by 1.
\frac{1}{18}t_{0}-\frac{83}{18}+t_{0}=100
Add t_{0} to both sides.
\frac{19}{18}t_{0}-\frac{83}{18}=100
Combine \frac{1}{18}t_{0} and t_{0} to get \frac{19}{18}t_{0}.
\frac{19}{18}t_{0}=100+\frac{83}{18}
Add \frac{83}{18} to both sides.
\frac{19}{18}t_{0}=\frac{1883}{18}
Add 100 and \frac{83}{18} to get \frac{1883}{18}.
t_{0}=\frac{1883}{18}\times \frac{18}{19}
Multiply both sides by \frac{18}{19}, the reciprocal of \frac{19}{18}.
t_{0}=\frac{1883}{19}
Multiply \frac{1883}{18} and \frac{18}{19} to get \frac{1883}{19}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}