Skip to main content
Solve for t_0
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{6}t_{0}-\frac{83}{6}\right)\left(100-87\right)=100-t_{0}
Variable t_{0} cannot be equal to 83 since division by zero is not defined. Multiply both sides of the equation by t_{0}-83.
\left(\frac{1}{6}t_{0}-\frac{83}{6}\right)\times 13=100-t_{0}
Subtract 87 from 100 to get 13.
\frac{13}{6}t_{0}-\frac{1079}{6}=100-t_{0}
Use the distributive property to multiply \frac{1}{6}t_{0}-\frac{83}{6} by 13.
\frac{13}{6}t_{0}-\frac{1079}{6}+t_{0}=100
Add t_{0} to both sides.
\frac{19}{6}t_{0}-\frac{1079}{6}=100
Combine \frac{13}{6}t_{0} and t_{0} to get \frac{19}{6}t_{0}.
\frac{19}{6}t_{0}=100+\frac{1079}{6}
Add \frac{1079}{6} to both sides.
\frac{19}{6}t_{0}=\frac{1679}{6}
Add 100 and \frac{1079}{6} to get \frac{1679}{6}.
t_{0}=\frac{1679}{6}\times \frac{6}{19}
Multiply both sides by \frac{6}{19}, the reciprocal of \frac{19}{6}.
t_{0}=\frac{1679}{19}
Multiply \frac{1679}{6} and \frac{6}{19} to get \frac{1679}{19}.