Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}=x
Rationalize the denominator of \frac{100\sqrt{3}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}=x
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1-3}=x
Square 1. Square \sqrt{3}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{-2}=x
Subtract 3 from 1 to get -2.
\frac{100\sqrt{3}+100\left(\sqrt{3}\right)^{2}}{-2}=x
Use the distributive property to multiply 100\sqrt{3} by 1+\sqrt{3}.
\frac{100\sqrt{3}+100\times 3}{-2}=x
The square of \sqrt{3} is 3.
\frac{100\sqrt{3}+300}{-2}=x
Multiply 100 and 3 to get 300.
-50\sqrt{3}-150=x
Divide each term of 100\sqrt{3}+300 by -2 to get -50\sqrt{3}-150.
x=-50\sqrt{3}-150
Swap sides so that all variable terms are on the left hand side.