Evaluate
\frac{20}{17}\approx 1.176470588
Factor
\frac{2 ^ {2} \cdot 5}{17} = 1\frac{3}{17} = 1.1764705882352942
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)100}\\\end{array}
Since 1 is less than 85, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{85)}00\phantom{4}\\85\overline{)100}\\\end{array}
Since 10 is less than 85, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{85)}00\phantom{5}\\85\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{85)}001\phantom{6}\\85\overline{)100}\\\phantom{85)}\underline{\phantom{9}85\phantom{}}\\\phantom{85)9}15\\\end{array}
Find closest multiple of 85 to 100. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 100 to get reminder 15. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }15
Since 15 is less than 85, stop the division. The reminder is 15. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}