Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)100}\\\end{array}
Since 1 is less than 75, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)100}\\\end{array}
Since 10 is less than 75, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{75)}001\phantom{6}\\75\overline{)100}\\\phantom{75)}\underline{\phantom{9}75\phantom{}}\\\phantom{75)9}25\\\end{array}
Find closest multiple of 75 to 100. We see that 1 \times 75 = 75 is the nearest. Now subtract 75 from 100 to get reminder 25. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }25
Since 25 is less than 75, stop the division. The reminder is 25. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}