Evaluate
\frac{25}{11}\approx 2.272727273
Factor
\frac{5 ^ {2}}{11} = 2\frac{3}{11} = 2.272727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)100}\\\end{array}
Since 1 is less than 44, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{44)}00\phantom{4}\\44\overline{)100}\\\end{array}
Since 10 is less than 44, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{44)}00\phantom{5}\\44\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{44)}002\phantom{6}\\44\overline{)100}\\\phantom{44)}\underline{\phantom{9}88\phantom{}}\\\phantom{44)9}12\\\end{array}
Find closest multiple of 44 to 100. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 100 to get reminder 12. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }12
Since 12 is less than 44, stop the division. The reminder is 12. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}