Solve for x
x\geq \frac{25}{2}
Graph
Share
Copied to clipboard
25\leq \frac{x}{0.5}
Divide 100 by 4 to get 25.
\frac{x}{0.5}\geq 25
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
x\geq 25\times 0.5
Multiply both sides by 0.5. Since 0.5 is positive, the inequality direction remains the same.
x\geq 12.5
Multiply 25 and 0.5 to get 12.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}