Evaluate
\frac{2356933258191963661119456599285093400}{30585627290848204916791848989276401}\approx 77.060157563
Share
Copied to clipboard
\frac{100}{3.2071354722128447318829929845779491454976}+4\left(1-\frac{1}{1.06^{20}}\right)\times \frac{1}{0.06}
Calculate 1.06 to the power of 20 and get 3.2071354722128447318829929845779491454976.
\frac{1000000000000000000000000000000000000000000}{32071354722128447318829929845779491454976}+4\left(1-\frac{1}{1.06^{20}}\right)\times \frac{1}{0.06}
Expand \frac{100}{3.2071354722128447318829929845779491454976} by multiplying both numerator and the denominator by 10000000000000000000000000000000000000000.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\left(1-\frac{1}{1.06^{20}}\right)\times \frac{1}{0.06}
Reduce the fraction \frac{1000000000000000000000000000000000000000000}{32071354722128447318829929845779491454976} to lowest terms by extracting and canceling out 1048576.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\left(1-\frac{1}{3.2071354722128447318829929845779491454976}\right)\times \frac{1}{0.06}
Calculate 1.06 to the power of 20 and get 3.2071354722128447318829929845779491454976.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\left(1-\frac{10000000000000000000000000000000000000000}{32071354722128447318829929845779491454976}\right)\times \frac{1}{0.06}
Expand \frac{1}{3.2071354722128447318829929845779491454976} by multiplying both numerator and the denominator by 10000000000000000000000000000000000000000.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\left(1-\frac{9536743164062500000000000000000000}{30585627290848204916791848989276401}\right)\times \frac{1}{0.06}
Reduce the fraction \frac{10000000000000000000000000000000000000000}{32071354722128447318829929845779491454976} to lowest terms by extracting and canceling out 1048576.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\left(\frac{30585627290848204916791848989276401}{30585627290848204916791848989276401}-\frac{9536743164062500000000000000000000}{30585627290848204916791848989276401}\right)\times \frac{1}{0.06}
Convert 1 to fraction \frac{30585627290848204916791848989276401}{30585627290848204916791848989276401}.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\times \frac{30585627290848204916791848989276401-9536743164062500000000000000000000}{30585627290848204916791848989276401}\times \frac{1}{0.06}
Since \frac{30585627290848204916791848989276401}{30585627290848204916791848989276401} and \frac{9536743164062500000000000000000000}{30585627290848204916791848989276401} have the same denominator, subtract them by subtracting their numerators.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+4\times \frac{21048884126785704916791848989276401}{30585627290848204916791848989276401}\times \frac{1}{0.06}
Subtract 9536743164062500000000000000000000 from 30585627290848204916791848989276401 to get 21048884126785704916791848989276401.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{4\times 21048884126785704916791848989276401}{30585627290848204916791848989276401}\times \frac{1}{0.06}
Express 4\times \frac{21048884126785704916791848989276401}{30585627290848204916791848989276401} as a single fraction.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{84195536507142819667167395957105604}{30585627290848204916791848989276401}\times \frac{1}{0.06}
Multiply 4 and 21048884126785704916791848989276401 to get 84195536507142819667167395957105604.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{84195536507142819667167395957105604}{30585627290848204916791848989276401}\times \frac{100}{6}
Expand \frac{1}{0.06} by multiplying both numerator and the denominator by 100.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{84195536507142819667167395957105604}{30585627290848204916791848989276401}\times \frac{50}{3}
Reduce the fraction \frac{100}{6} to lowest terms by extracting and canceling out 2.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{84195536507142819667167395957105604\times 50}{30585627290848204916791848989276401\times 3}
Multiply \frac{84195536507142819667167395957105604}{30585627290848204916791848989276401} times \frac{50}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{4209776825357140983358369797855280200}{91756881872544614750375546967829203}
Do the multiplications in the fraction \frac{84195536507142819667167395957105604\times 50}{30585627290848204916791848989276401\times 3}.
\frac{953674316406250000000000000000000000}{30585627290848204916791848989276401}+\frac{1403258941785713661119456599285093400}{30585627290848204916791848989276401}
Reduce the fraction \frac{4209776825357140983358369797855280200}{91756881872544614750375546967829203} to lowest terms by extracting and canceling out 3.
\frac{953674316406250000000000000000000000+1403258941785713661119456599285093400}{30585627290848204916791848989276401}
Since \frac{953674316406250000000000000000000000}{30585627290848204916791848989276401} and \frac{1403258941785713661119456599285093400}{30585627290848204916791848989276401} have the same denominator, add them by adding their numerators.
\frac{2356933258191963661119456599285093400}{30585627290848204916791848989276401}
Add 953674316406250000000000000000000000 and 1403258941785713661119456599285093400 to get 2356933258191963661119456599285093400.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}