Solve for x
x = \frac{140}{3} = 46\frac{2}{3} \approx 46.666666667
Graph
Share
Copied to clipboard
\frac{10-x}{-20}=\frac{-5-50}{-5-25}
Subtract 30 from 10 to get -20.
\frac{-10+x}{20}=\frac{-5-50}{-5-25}
Multiply both numerator and denominator by -1.
\frac{-10+x}{20}=\frac{-55}{-5-25}
Subtract 50 from -5 to get -55.
\frac{-10+x}{20}=\frac{-55}{-30}
Subtract 25 from -5 to get -30.
\frac{-10+x}{20}=\frac{11}{6}
Reduce the fraction \frac{-55}{-30} to lowest terms by extracting and canceling out -5.
-\frac{1}{2}+\frac{1}{20}x=\frac{11}{6}
Divide each term of -10+x by 20 to get -\frac{1}{2}+\frac{1}{20}x.
\frac{1}{20}x=\frac{11}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{1}{20}x=\frac{11}{6}+\frac{3}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{11}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{1}{20}x=\frac{11+3}{6}
Since \frac{11}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{1}{20}x=\frac{14}{6}
Add 11 and 3 to get 14.
\frac{1}{20}x=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
x=\frac{7}{3}\times 20
Multiply both sides by 20, the reciprocal of \frac{1}{20}.
x=\frac{7\times 20}{3}
Express \frac{7}{3}\times 20 as a single fraction.
x=\frac{140}{3}
Multiply 7 and 20 to get 140.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}