Solve for x
x=\frac{64}{71}\approx 0.901408451
Graph
Share
Copied to clipboard
9\left(10-3x\right)-8\left(x+2\right)-34=12\left(3x-2\right)
Multiply both sides of the equation by 72, the least common multiple of 8,9,36,6.
90-27x-8\left(x+2\right)-34=12\left(3x-2\right)
Use the distributive property to multiply 9 by 10-3x.
90-27x-8x-16-34=12\left(3x-2\right)
Use the distributive property to multiply -8 by x+2.
90-35x-16-34=12\left(3x-2\right)
Combine -27x and -8x to get -35x.
74-35x-34=12\left(3x-2\right)
Subtract 16 from 90 to get 74.
40-35x=12\left(3x-2\right)
Subtract 34 from 74 to get 40.
40-35x=36x-24
Use the distributive property to multiply 12 by 3x-2.
40-35x-36x=-24
Subtract 36x from both sides.
40-71x=-24
Combine -35x and -36x to get -71x.
-71x=-24-40
Subtract 40 from both sides.
-71x=-64
Subtract 40 from -24 to get -64.
x=\frac{-64}{-71}
Divide both sides by -71.
x=\frac{64}{71}
Fraction \frac{-64}{-71} can be simplified to \frac{64}{71} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}