\frac{ 10+x }{ 90+(10+x) } \times 100 \% =20 \%
Solve for x
x = \frac{25}{2} = 12\frac{1}{2} = 12.5
Graph
Share
Copied to clipboard
100\left(10+x\right)\times \frac{100}{100}=\left(x+100\right)\times 20
Variable x cannot be equal to -100 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+100\right), the least common multiple of 90+10+x,100.
100\left(10+x\right)\times 1=\left(x+100\right)\times 20
Divide 100 by 100 to get 1.
100\left(10+x\right)=\left(x+100\right)\times 20
Multiply 100 and 1 to get 100.
1000+100x=\left(x+100\right)\times 20
Use the distributive property to multiply 100 by 10+x.
1000+100x=20x+2000
Use the distributive property to multiply x+100 by 20.
1000+100x-20x=2000
Subtract 20x from both sides.
1000+80x=2000
Combine 100x and -20x to get 80x.
80x=2000-1000
Subtract 1000 from both sides.
80x=1000
Subtract 1000 from 2000 to get 1000.
x=\frac{1000}{80}
Divide both sides by 80.
x=\frac{25}{2}
Reduce the fraction \frac{1000}{80} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}