Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\sqrt{2}\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{10\sqrt{2}}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
\frac{10\sqrt{2}\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\sqrt{2}\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
\frac{10\sqrt{2}\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{10\sqrt{2}\sqrt{3}-30\sqrt{2}}{-6}
Use the distributive property to multiply 10\sqrt{2} by \sqrt{3}-3.
\frac{10\sqrt{6}-30\sqrt{2}}{-6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.