\frac{ 10 \% x }{ x+500 } =0.3 \%
Solve for x
x = \frac{1500}{97} = 15\frac{45}{97} \approx 15.463917526
Graph
Share
Copied to clipboard
100\times \frac{10}{100}x=\left(x+500\right)\times 0.3
Variable x cannot be equal to -500 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+500\right), the least common multiple of x+500,100.
100\times \frac{1}{10}x=\left(x+500\right)\times 0.3
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
10x=\left(x+500\right)\times 0.3
Multiply 100 and \frac{1}{10} to get 10.
10x=0.3x+150
Use the distributive property to multiply x+500 by 0.3.
10x-0.3x=150
Subtract 0.3x from both sides.
9.7x=150
Combine 10x and -0.3x to get 9.7x.
x=\frac{150}{9.7}
Divide both sides by 9.7.
x=\frac{1500}{97}
Expand \frac{150}{9.7} by multiplying both numerator and the denominator by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}