Solve for y
y=\frac{\sqrt{13}-1}{12}\approx 0.217129273
y=\frac{-\sqrt{13}-1}{12}\approx -0.38379594
Graph
Share
Copied to clipboard
\left(6y+1\right)\times 10-y\times 60=20y\left(6y+1\right)
Variable y cannot be equal to any of the values -\frac{1}{6},0 since division by zero is not defined. Multiply both sides of the equation by y\left(6y+1\right), the least common multiple of y,1+6y.
60y+10-y\times 60=20y\left(6y+1\right)
Use the distributive property to multiply 6y+1 by 10.
60y+10-y\times 60=120y^{2}+20y
Use the distributive property to multiply 20y by 6y+1.
60y+10-y\times 60-120y^{2}=20y
Subtract 120y^{2} from both sides.
60y+10-y\times 60-120y^{2}-20y=0
Subtract 20y from both sides.
40y+10-y\times 60-120y^{2}=0
Combine 60y and -20y to get 40y.
40y+10-60y-120y^{2}=0
Multiply -1 and 60 to get -60.
-20y+10-120y^{2}=0
Combine 40y and -60y to get -20y.
-120y^{2}-20y+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-120\right)\times 10}}{2\left(-120\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -120 for a, -20 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-20\right)±\sqrt{400-4\left(-120\right)\times 10}}{2\left(-120\right)}
Square -20.
y=\frac{-\left(-20\right)±\sqrt{400+480\times 10}}{2\left(-120\right)}
Multiply -4 times -120.
y=\frac{-\left(-20\right)±\sqrt{400+4800}}{2\left(-120\right)}
Multiply 480 times 10.
y=\frac{-\left(-20\right)±\sqrt{5200}}{2\left(-120\right)}
Add 400 to 4800.
y=\frac{-\left(-20\right)±20\sqrt{13}}{2\left(-120\right)}
Take the square root of 5200.
y=\frac{20±20\sqrt{13}}{2\left(-120\right)}
The opposite of -20 is 20.
y=\frac{20±20\sqrt{13}}{-240}
Multiply 2 times -120.
y=\frac{20\sqrt{13}+20}{-240}
Now solve the equation y=\frac{20±20\sqrt{13}}{-240} when ± is plus. Add 20 to 20\sqrt{13}.
y=\frac{-\sqrt{13}-1}{12}
Divide 20+20\sqrt{13} by -240.
y=\frac{20-20\sqrt{13}}{-240}
Now solve the equation y=\frac{20±20\sqrt{13}}{-240} when ± is minus. Subtract 20\sqrt{13} from 20.
y=\frac{\sqrt{13}-1}{12}
Divide 20-20\sqrt{13} by -240.
y=\frac{-\sqrt{13}-1}{12} y=\frac{\sqrt{13}-1}{12}
The equation is now solved.
\left(6y+1\right)\times 10-y\times 60=20y\left(6y+1\right)
Variable y cannot be equal to any of the values -\frac{1}{6},0 since division by zero is not defined. Multiply both sides of the equation by y\left(6y+1\right), the least common multiple of y,1+6y.
60y+10-y\times 60=20y\left(6y+1\right)
Use the distributive property to multiply 6y+1 by 10.
60y+10-y\times 60=120y^{2}+20y
Use the distributive property to multiply 20y by 6y+1.
60y+10-y\times 60-120y^{2}=20y
Subtract 120y^{2} from both sides.
60y+10-y\times 60-120y^{2}-20y=0
Subtract 20y from both sides.
40y+10-y\times 60-120y^{2}=0
Combine 60y and -20y to get 40y.
40y-y\times 60-120y^{2}=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
40y-60y-120y^{2}=-10
Multiply -1 and 60 to get -60.
-20y-120y^{2}=-10
Combine 40y and -60y to get -20y.
-120y^{2}-20y=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-120y^{2}-20y}{-120}=-\frac{10}{-120}
Divide both sides by -120.
y^{2}+\left(-\frac{20}{-120}\right)y=-\frac{10}{-120}
Dividing by -120 undoes the multiplication by -120.
y^{2}+\frac{1}{6}y=-\frac{10}{-120}
Reduce the fraction \frac{-20}{-120} to lowest terms by extracting and canceling out 20.
y^{2}+\frac{1}{6}y=\frac{1}{12}
Reduce the fraction \frac{-10}{-120} to lowest terms by extracting and canceling out 10.
y^{2}+\frac{1}{6}y+\left(\frac{1}{12}\right)^{2}=\frac{1}{12}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{6}y+\frac{1}{144}=\frac{1}{12}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{6}y+\frac{1}{144}=\frac{13}{144}
Add \frac{1}{12} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{12}\right)^{2}=\frac{13}{144}
Factor y^{2}+\frac{1}{6}y+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{12}\right)^{2}}=\sqrt{\frac{13}{144}}
Take the square root of both sides of the equation.
y+\frac{1}{12}=\frac{\sqrt{13}}{12} y+\frac{1}{12}=-\frac{\sqrt{13}}{12}
Simplify.
y=\frac{\sqrt{13}-1}{12} y=\frac{-\sqrt{13}-1}{12}
Subtract \frac{1}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}