Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{\left(4\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{2}+3\sqrt{3}\right)}
Rationalize the denominator of \frac{10}{4\sqrt{2}-3\sqrt{3}} by multiplying numerator and denominator by 4\sqrt{2}+3\sqrt{3}.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{\left(4\sqrt{2}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(4\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{2}+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{4^{2}\left(\sqrt{2}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{2}\right)^{2}.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{16\left(\sqrt{2}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{16\times 2-\left(-3\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{32-\left(-3\sqrt{3}\right)^{2}}
Multiply 16 and 2 to get 32.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{32-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{32-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{32-9\times 3}
The square of \sqrt{3} is 3.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{32-27}
Multiply 9 and 3 to get 27.
\frac{10\left(4\sqrt{2}+3\sqrt{3}\right)}{5}
Subtract 27 from 32 to get 5.
2\left(4\sqrt{2}+3\sqrt{3}\right)
Divide 10\left(4\sqrt{2}+3\sqrt{3}\right) by 5 to get 2\left(4\sqrt{2}+3\sqrt{3}\right).
8\sqrt{2}+6\sqrt{3}
Use the distributive property to multiply 2 by 4\sqrt{2}+3\sqrt{3}.