Evaluate
\frac{2\left(ayz\right)^{2}x^{10}}{3}
Differentiate w.r.t. x
\frac{20\left(ayz\right)^{2}x^{9}}{3}
Share
Copied to clipboard
\frac{10}{21}x^{9}yz^{2}\times \frac{14}{5}a\times \frac{9}{18}axy
To multiply powers of the same base, add their exponents. Add 8 and 1 to get 9.
\frac{10}{21}x^{10}yz^{2}\times \frac{14}{5}a\times \frac{9}{18}ay
To multiply powers of the same base, add their exponents. Add 9 and 1 to get 10.
\frac{10}{21}x^{10}y^{2}z^{2}\times \frac{14}{5}a\times \frac{9}{18}a
Multiply y and y to get y^{2}.
\frac{10}{21}x^{10}y^{2}z^{2}\times \frac{14}{5}a^{2}\times \frac{9}{18}
Multiply a and a to get a^{2}.
\frac{4}{3}x^{10}y^{2}z^{2}a^{2}\times \frac{9}{18}
Multiply \frac{10}{21} and \frac{14}{5} to get \frac{4}{3}.
\frac{4}{3}x^{10}y^{2}z^{2}a^{2}\times \frac{1}{2}
Reduce the fraction \frac{9}{18} to lowest terms by extracting and canceling out 9.
\frac{2}{3}x^{10}y^{2}z^{2}a^{2}
Multiply \frac{4}{3} and \frac{1}{2} to get \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}