Evaluate
\frac{1777}{225}\approx 7.897777778
Factor
\frac{1777}{3 ^ {2} \cdot 5 ^ {2}} = 7\frac{202}{225} = 7.897777777777778
Share
Copied to clipboard
10-\frac{141}{100}-\frac{47}{9}+\frac{453}{100}
Anything divided by one gives itself.
\frac{1000}{100}-\frac{141}{100}-\frac{47}{9}+\frac{453}{100}
Convert 10 to fraction \frac{1000}{100}.
\frac{1000-141}{100}-\frac{47}{9}+\frac{453}{100}
Since \frac{1000}{100} and \frac{141}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{859}{100}-\frac{47}{9}+\frac{453}{100}
Subtract 141 from 1000 to get 859.
\frac{7731}{900}-\frac{4700}{900}+\frac{453}{100}
Least common multiple of 100 and 9 is 900. Convert \frac{859}{100} and \frac{47}{9} to fractions with denominator 900.
\frac{7731-4700}{900}+\frac{453}{100}
Since \frac{7731}{900} and \frac{4700}{900} have the same denominator, subtract them by subtracting their numerators.
\frac{3031}{900}+\frac{453}{100}
Subtract 4700 from 7731 to get 3031.
\frac{3031}{900}+\frac{4077}{900}
Least common multiple of 900 and 100 is 900. Convert \frac{3031}{900} and \frac{453}{100} to fractions with denominator 900.
\frac{3031+4077}{900}
Since \frac{3031}{900} and \frac{4077}{900} have the same denominator, add them by adding their numerators.
\frac{7108}{900}
Add 3031 and 4077 to get 7108.
\frac{1777}{225}
Reduce the fraction \frac{7108}{900} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}