Solve for x
x=-6
x=3
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ 10 }{ { x }^{ 2 } -2x-8 } + \frac{ 5 }{ x+2 } +1=0
Share
Copied to clipboard
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x^{2}-2x-8,x+2.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
Use the distributive property to multiply x-4 by 5.
-10+5x+\left(x-4\right)\left(x+2\right)=0
Subtract 20 from 10 to get -10.
-10+5x+x^{2}-2x-8=0
Use the distributive property to multiply x-4 by x+2 and combine like terms.
-10+3x+x^{2}-8=0
Combine 5x and -2x to get 3x.
-18+3x+x^{2}=0
Subtract 8 from -10 to get -18.
x^{2}+3x-18=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=-18
To solve the equation, factor x^{2}+3x-18 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-3 b=6
The solution is the pair that gives sum 3.
\left(x-3\right)\left(x+6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=3 x=-6
To find equation solutions, solve x-3=0 and x+6=0.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x^{2}-2x-8,x+2.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
Use the distributive property to multiply x-4 by 5.
-10+5x+\left(x-4\right)\left(x+2\right)=0
Subtract 20 from 10 to get -10.
-10+5x+x^{2}-2x-8=0
Use the distributive property to multiply x-4 by x+2 and combine like terms.
-10+3x+x^{2}-8=0
Combine 5x and -2x to get 3x.
-18+3x+x^{2}=0
Subtract 8 from -10 to get -18.
x^{2}+3x-18=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=1\left(-18\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-3 b=6
The solution is the pair that gives sum 3.
\left(x^{2}-3x\right)+\left(6x-18\right)
Rewrite x^{2}+3x-18 as \left(x^{2}-3x\right)+\left(6x-18\right).
x\left(x-3\right)+6\left(x-3\right)
Factor out x in the first and 6 in the second group.
\left(x-3\right)\left(x+6\right)
Factor out common term x-3 by using distributive property.
x=3 x=-6
To find equation solutions, solve x-3=0 and x+6=0.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x^{2}-2x-8,x+2.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
Use the distributive property to multiply x-4 by 5.
-10+5x+\left(x-4\right)\left(x+2\right)=0
Subtract 20 from 10 to get -10.
-10+5x+x^{2}-2x-8=0
Use the distributive property to multiply x-4 by x+2 and combine like terms.
-10+3x+x^{2}-8=0
Combine 5x and -2x to get 3x.
-18+3x+x^{2}=0
Subtract 8 from -10 to get -18.
x^{2}+3x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+72}}{2}
Multiply -4 times -18.
x=\frac{-3±\sqrt{81}}{2}
Add 9 to 72.
x=\frac{-3±9}{2}
Take the square root of 81.
x=\frac{6}{2}
Now solve the equation x=\frac{-3±9}{2} when ± is plus. Add -3 to 9.
x=3
Divide 6 by 2.
x=-\frac{12}{2}
Now solve the equation x=\frac{-3±9}{2} when ± is minus. Subtract 9 from -3.
x=-6
Divide -12 by 2.
x=3 x=-6
The equation is now solved.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x^{2}-2x-8,x+2.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
Use the distributive property to multiply x-4 by 5.
-10+5x+\left(x-4\right)\left(x+2\right)=0
Subtract 20 from 10 to get -10.
-10+5x+x^{2}-2x-8=0
Use the distributive property to multiply x-4 by x+2 and combine like terms.
-10+3x+x^{2}-8=0
Combine 5x and -2x to get 3x.
-18+3x+x^{2}=0
Subtract 8 from -10 to get -18.
3x+x^{2}=18
Add 18 to both sides. Anything plus zero gives itself.
x^{2}+3x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=18+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{81}{4}
Add 18 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{9}{2} x+\frac{3}{2}=-\frac{9}{2}
Simplify.
x=3 x=-6
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}