Solve for x
x=\frac{6}{7}\approx 0.857142857
Graph
Share
Copied to clipboard
\frac{13}{3}x-\frac{1.5-x}{0.2}=0.5
Divide 1.3x by 0.3 to get \frac{13}{3}x.
\frac{13}{3}x-\left(\frac{1.5}{0.2}+\frac{-x}{0.2}\right)=0.5
Divide each term of 1.5-x by 0.2 to get \frac{1.5}{0.2}+\frac{-x}{0.2}.
\frac{13}{3}x-\left(\frac{15}{2}+\frac{-x}{0.2}\right)=0.5
Expand \frac{1.5}{0.2} by multiplying both numerator and the denominator by 10.
\frac{13}{3}x-\left(\frac{15}{2}-5x\right)=0.5
Divide -x by 0.2 to get -5x.
\frac{13}{3}x-\frac{15}{2}-\left(-5x\right)=0.5
To find the opposite of \frac{15}{2}-5x, find the opposite of each term.
\frac{13}{3}x-\frac{15}{2}+5x=0.5
The opposite of -5x is 5x.
\frac{28}{3}x-\frac{15}{2}=0.5
Combine \frac{13}{3}x and 5x to get \frac{28}{3}x.
\frac{28}{3}x=0.5+\frac{15}{2}
Add \frac{15}{2} to both sides.
\frac{28}{3}x=\frac{1}{2}+\frac{15}{2}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{28}{3}x=\frac{1+15}{2}
Since \frac{1}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\frac{28}{3}x=\frac{16}{2}
Add 1 and 15 to get 16.
\frac{28}{3}x=8
Divide 16 by 2 to get 8.
x=\frac{8}{\frac{28}{3}}
Divide both sides by \frac{28}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}