Solve for x (complex solution)
x=-\frac{11y-13}{2\left(2-y\right)}
y\neq 2\text{ and }y\neq 1\text{ and }y\neq -1
Solve for x
x=-\frac{11y-13}{2\left(2-y\right)}
y\neq 2\text{ and }|y|\neq 1
Solve for y
y=-\frac{4x-13}{11-2x}
x\neq 1\text{ and }x\neq \frac{11}{2}\text{ and }x\neq 4
Graph
Share
Copied to clipboard
-\left(1+y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
Multiply both sides of the equation by \left(y-1\right)\left(y+1\right), the least common multiple of 1-y,-1-y.
\left(-1-y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
To find the opposite of 1+y, find the opposite of each term.
-1+x-y+yx=\left(1-y\right)\times 3\left(4-x\right)
Use the distributive property to multiply -1-y by 1-x.
-1+x-y+yx=\left(3-3y\right)\left(4-x\right)
Use the distributive property to multiply 1-y by 3.
-1+x-y+yx=12-3x-12y+3yx
Use the distributive property to multiply 3-3y by 4-x.
-1+x-y+yx+3x=12-12y+3yx
Add 3x to both sides.
-1+4x-y+yx=12-12y+3yx
Combine x and 3x to get 4x.
-1+4x-y+yx-3yx=12-12y
Subtract 3yx from both sides.
-1+4x-y-2yx=12-12y
Combine yx and -3yx to get -2yx.
4x-y-2yx=12-12y+1
Add 1 to both sides.
4x-y-2yx=13-12y
Add 12 and 1 to get 13.
4x-2yx=13-12y+y
Add y to both sides.
4x-2yx=13-11y
Combine -12y and y to get -11y.
\left(4-2y\right)x=13-11y
Combine all terms containing x.
\frac{\left(4-2y\right)x}{4-2y}=\frac{13-11y}{4-2y}
Divide both sides by -2y+4.
x=\frac{13-11y}{4-2y}
Dividing by -2y+4 undoes the multiplication by -2y+4.
x=\frac{13-11y}{2\left(2-y\right)}
Divide 13-11y by -2y+4.
-\left(1+y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
Multiply both sides of the equation by \left(y-1\right)\left(y+1\right), the least common multiple of 1-y,-1-y.
\left(-1-y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
To find the opposite of 1+y, find the opposite of each term.
-1+x-y+yx=\left(1-y\right)\times 3\left(4-x\right)
Use the distributive property to multiply -1-y by 1-x.
-1+x-y+yx=\left(3-3y\right)\left(4-x\right)
Use the distributive property to multiply 1-y by 3.
-1+x-y+yx=12-3x-12y+3yx
Use the distributive property to multiply 3-3y by 4-x.
-1+x-y+yx+3x=12-12y+3yx
Add 3x to both sides.
-1+4x-y+yx=12-12y+3yx
Combine x and 3x to get 4x.
-1+4x-y+yx-3yx=12-12y
Subtract 3yx from both sides.
-1+4x-y-2yx=12-12y
Combine yx and -3yx to get -2yx.
4x-y-2yx=12-12y+1
Add 1 to both sides.
4x-y-2yx=13-12y
Add 12 and 1 to get 13.
4x-2yx=13-12y+y
Add y to both sides.
4x-2yx=13-11y
Combine -12y and y to get -11y.
\left(4-2y\right)x=13-11y
Combine all terms containing x.
\frac{\left(4-2y\right)x}{4-2y}=\frac{13-11y}{4-2y}
Divide both sides by -2y+4.
x=\frac{13-11y}{4-2y}
Dividing by -2y+4 undoes the multiplication by -2y+4.
x=\frac{13-11y}{2\left(2-y\right)}
Divide 13-11y by -2y+4.
-\left(1+y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
Variable y cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(y-1\right)\left(y+1\right), the least common multiple of 1-y,-1-y.
\left(-1-y\right)\left(1-x\right)=\left(1-y\right)\times 3\left(4-x\right)
To find the opposite of 1+y, find the opposite of each term.
-1+x-y+yx=\left(1-y\right)\times 3\left(4-x\right)
Use the distributive property to multiply -1-y by 1-x.
-1+x-y+yx=\left(3-3y\right)\left(4-x\right)
Use the distributive property to multiply 1-y by 3.
-1+x-y+yx=12-3x-12y+3yx
Use the distributive property to multiply 3-3y by 4-x.
-1+x-y+yx+12y=12-3x+3yx
Add 12y to both sides.
-1+x+11y+yx=12-3x+3yx
Combine -y and 12y to get 11y.
-1+x+11y+yx-3yx=12-3x
Subtract 3yx from both sides.
-1+x+11y-2yx=12-3x
Combine yx and -3yx to get -2yx.
x+11y-2yx=12-3x+1
Add 1 to both sides.
x+11y-2yx=13-3x
Add 12 and 1 to get 13.
11y-2yx=13-3x-x
Subtract x from both sides.
11y-2yx=13-4x
Combine -3x and -x to get -4x.
\left(11-2x\right)y=13-4x
Combine all terms containing y.
\frac{\left(11-2x\right)y}{11-2x}=\frac{13-4x}{11-2x}
Divide both sides by -2x+11.
y=\frac{13-4x}{11-2x}
Dividing by -2x+11 undoes the multiplication by -2x+11.
y=\frac{13-4x}{11-2x}\text{, }y\neq -1\text{ and }y\neq 1
Variable y cannot be equal to any of the values -1,1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}