Solve for x
x = -\frac{19}{14} = -1\frac{5}{14} \approx -1.357142857
Graph
Share
Copied to clipboard
\left(4x+5\right)\left(1-4x\right)+2\left(x+1\right)\left(4x+5\right)\times 2=\left(2x+2\right)\times 3
Variable x cannot be equal to any of the values -\frac{5}{4},-1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right)\left(4x+5\right), the least common multiple of 2x+2,4x+5.
-16x-16x^{2}+5+2\left(x+1\right)\left(4x+5\right)\times 2=\left(2x+2\right)\times 3
Use the distributive property to multiply 4x+5 by 1-4x and combine like terms.
-16x-16x^{2}+5+4\left(x+1\right)\left(4x+5\right)=\left(2x+2\right)\times 3
Multiply 2 and 2 to get 4.
-16x-16x^{2}+5+\left(4x+4\right)\left(4x+5\right)=\left(2x+2\right)\times 3
Use the distributive property to multiply 4 by x+1.
-16x-16x^{2}+5+16x^{2}+36x+20=\left(2x+2\right)\times 3
Use the distributive property to multiply 4x+4 by 4x+5 and combine like terms.
-16x+5+36x+20=\left(2x+2\right)\times 3
Combine -16x^{2} and 16x^{2} to get 0.
20x+5+20=\left(2x+2\right)\times 3
Combine -16x and 36x to get 20x.
20x+25=\left(2x+2\right)\times 3
Add 5 and 20 to get 25.
20x+25=6x+6
Use the distributive property to multiply 2x+2 by 3.
20x+25-6x=6
Subtract 6x from both sides.
14x+25=6
Combine 20x and -6x to get 14x.
14x=6-25
Subtract 25 from both sides.
14x=-19
Subtract 25 from 6 to get -19.
x=\frac{-19}{14}
Divide both sides by 14.
x=-\frac{19}{14}
Fraction \frac{-19}{14} can be rewritten as -\frac{19}{14} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}