Evaluate
-\frac{404}{493}\approx -0.819472617
Factor
-\frac{404}{493} = -0.8194726166328601
Share
Copied to clipboard
\frac{1-\frac{493}{89}}{\frac{1479}{267}}
Reduce the fraction \frac{1479}{267} to lowest terms by extracting and canceling out 3.
\frac{\frac{89}{89}-\frac{493}{89}}{\frac{1479}{267}}
Convert 1 to fraction \frac{89}{89}.
\frac{\frac{89-493}{89}}{\frac{1479}{267}}
Since \frac{89}{89} and \frac{493}{89} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{404}{89}}{\frac{1479}{267}}
Subtract 493 from 89 to get -404.
\frac{-\frac{404}{89}}{\frac{493}{89}}
Reduce the fraction \frac{1479}{267} to lowest terms by extracting and canceling out 3.
-\frac{404}{89}\times \frac{89}{493}
Divide -\frac{404}{89} by \frac{493}{89} by multiplying -\frac{404}{89} by the reciprocal of \frac{493}{89}.
\frac{-404\times 89}{89\times 493}
Multiply -\frac{404}{89} times \frac{89}{493} by multiplying numerator times numerator and denominator times denominator.
\frac{-404}{493}
Cancel out 89 in both numerator and denominator.
-\frac{404}{493}
Fraction \frac{-404}{493} can be rewritten as -\frac{404}{493} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}