Evaluate
\frac{397}{493}\approx 0.805273834
Factor
\frac{397}{17 \cdot 29} = 0.8052738336713996
Share
Copied to clipboard
\frac{1-\frac{1479}{2670}}{\frac{1.479}{2.67}}
Expand \frac{1.479}{2.67} by multiplying both numerator and the denominator by 1000.
\frac{1-\frac{493}{890}}{\frac{1.479}{2.67}}
Reduce the fraction \frac{1479}{2670} to lowest terms by extracting and canceling out 3.
\frac{\frac{890}{890}-\frac{493}{890}}{\frac{1.479}{2.67}}
Convert 1 to fraction \frac{890}{890}.
\frac{\frac{890-493}{890}}{\frac{1.479}{2.67}}
Since \frac{890}{890} and \frac{493}{890} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{397}{890}}{\frac{1.479}{2.67}}
Subtract 493 from 890 to get 397.
\frac{\frac{397}{890}}{\frac{1479}{2670}}
Expand \frac{1.479}{2.67} by multiplying both numerator and the denominator by 1000.
\frac{\frac{397}{890}}{\frac{493}{890}}
Reduce the fraction \frac{1479}{2670} to lowest terms by extracting and canceling out 3.
\frac{397}{890}\times \frac{890}{493}
Divide \frac{397}{890} by \frac{493}{890} by multiplying \frac{397}{890} by the reciprocal of \frac{493}{890}.
\frac{397\times 890}{890\times 493}
Multiply \frac{397}{890} times \frac{890}{493} by multiplying numerator times numerator and denominator times denominator.
\frac{397}{493}
Cancel out 890 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}