Evaluate
-\frac{\sqrt{3}}{9}+\frac{4}{3}\approx 1.140883244
Share
Copied to clipboard
\frac{1-4\sqrt{3}}{-3\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1-4\sqrt{3}}{-3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\times 3}
The square of \sqrt{3} is 3.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-9}
Multiply -3 and 3 to get -9.
\frac{\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{-9}
Use the distributive property to multiply 1-4\sqrt{3} by \sqrt{3}.
\frac{\sqrt{3}-4\times 3}{-9}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}-12}{-9}
Multiply -4 and 3 to get -12.
\frac{-\sqrt{3}+12}{9}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}