Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-4\sqrt{3}}{-3\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1-4\sqrt{3}}{-3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\times 3}
The square of \sqrt{3} is 3.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-9}
Multiply -3 and 3 to get -9.
\frac{\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{-9}
Use the distributive property to multiply 1-4\sqrt{3} by \sqrt{3}.
\frac{\sqrt{3}-4\times 3}{-9}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}-12}{-9}
Multiply -4 and 3 to get -12.
\frac{-\sqrt{3}+12}{9}
Multiply both numerator and denominator by -1.