Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{6}\right)}{\left(1+\sqrt{6}\right)\left(1-\sqrt{6}\right)}
Rationalize the denominator of \frac{1-\sqrt{2}}{1+\sqrt{6}} by multiplying numerator and denominator by 1-\sqrt{6}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{6}\right)}{1^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(1+\sqrt{6}\right)\left(1-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{6}\right)}{1-6}
Square 1. Square \sqrt{6}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{6}\right)}{-5}
Subtract 6 from 1 to get -5.
\frac{1-\sqrt{6}-\sqrt{2}+\sqrt{2}\sqrt{6}}{-5}
Apply the distributive property by multiplying each term of 1-\sqrt{2} by each term of 1-\sqrt{6}.
\frac{1-\sqrt{6}-\sqrt{2}+\sqrt{2}\sqrt{2}\sqrt{3}}{-5}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{1-\sqrt{6}-\sqrt{2}+2\sqrt{3}}{-5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-1+\sqrt{6}+\sqrt{2}-2\sqrt{3}}{5}
Multiply both numerator and denominator by -1.