Evaluate
\frac{10}{39}\approx 0.256410256
Factor
\frac{2 \cdot 5}{3 \cdot 13} = 0.2564102564102564
Share
Copied to clipboard
\frac{1-\frac{1}{\frac{4}{2}-\frac{1}{2}}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Convert 2 to fraction \frac{4}{2}.
\frac{1-\frac{1}{\frac{4-1}{2}}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1-\frac{1}{\frac{3}{2}}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Subtract 1 from 4 to get 3.
\frac{1-1\times \frac{2}{3}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{1-\frac{2}{3}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{\frac{3}{3}-\frac{2}{3}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3-2}{3}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3}}{1+\frac{\frac{1}{2}}{1+\frac{2}{3}}}
Subtract 2 from 3 to get 1.
\frac{\frac{1}{3}}{1+\frac{\frac{1}{2}}{\frac{3}{3}+\frac{2}{3}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{3}}{1+\frac{\frac{1}{2}}{\frac{3+2}{3}}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{3}}{1+\frac{\frac{1}{2}}{\frac{5}{3}}}
Add 3 and 2 to get 5.
\frac{\frac{1}{3}}{1+\frac{1}{2}\times \frac{3}{5}}
Divide \frac{1}{2} by \frac{5}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{5}{3}.
\frac{\frac{1}{3}}{1+\frac{1\times 3}{2\times 5}}
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{3}}{1+\frac{3}{10}}
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\frac{\frac{1}{3}}{\frac{10}{10}+\frac{3}{10}}
Convert 1 to fraction \frac{10}{10}.
\frac{\frac{1}{3}}{\frac{10+3}{10}}
Since \frac{10}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{3}}{\frac{13}{10}}
Add 10 and 3 to get 13.
\frac{1}{3}\times \frac{10}{13}
Divide \frac{1}{3} by \frac{13}{10} by multiplying \frac{1}{3} by the reciprocal of \frac{13}{10}.
\frac{1\times 10}{3\times 13}
Multiply \frac{1}{3} times \frac{10}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{39}
Do the multiplications in the fraction \frac{1\times 10}{3\times 13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}