Verify
false
Share
Copied to clipboard
\frac{\frac{16}{16}-\frac{1}{16}}{1-\frac{1}{2}}=1+\frac{2}{16}
Convert 1 to fraction \frac{16}{16}.
\frac{\frac{16-1}{16}}{1-\frac{1}{2}}=1+\frac{2}{16}
Since \frac{16}{16} and \frac{1}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{15}{16}}{1-\frac{1}{2}}=1+\frac{2}{16}
Subtract 1 from 16 to get 15.
\frac{\frac{15}{16}}{\frac{2}{2}-\frac{1}{2}}=1+\frac{2}{16}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{15}{16}}{\frac{2-1}{2}}=1+\frac{2}{16}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{15}{16}}{\frac{1}{2}}=1+\frac{2}{16}
Subtract 1 from 2 to get 1.
\frac{15}{16}\times 2=1+\frac{2}{16}
Divide \frac{15}{16} by \frac{1}{2} by multiplying \frac{15}{16} by the reciprocal of \frac{1}{2}.
\frac{15\times 2}{16}=1+\frac{2}{16}
Express \frac{15}{16}\times 2 as a single fraction.
\frac{30}{16}=1+\frac{2}{16}
Multiply 15 and 2 to get 30.
\frac{15}{8}=1+\frac{2}{16}
Reduce the fraction \frac{30}{16} to lowest terms by extracting and canceling out 2.
\frac{15}{8}=1+\frac{1}{8}
Reduce the fraction \frac{2}{16} to lowest terms by extracting and canceling out 2.
\frac{15}{8}=\frac{8}{8}+\frac{1}{8}
Convert 1 to fraction \frac{8}{8}.
\frac{15}{8}=\frac{8+1}{8}
Since \frac{8}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{15}{8}=\frac{9}{8}
Add 8 and 1 to get 9.
\text{false}
Compare \frac{15}{8} and \frac{9}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}