Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(1+x\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}+2
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1+x}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1-x}{1+x} times \frac{-x+1}{-x+1}.
\frac{\left(1+x\right)\left(x+1\right)+\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}+2
Since \frac{\left(1+x\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{1+x+x^{2}+x+1-x+x^{2}-x}{\left(x+1\right)\left(-x+1\right)}+2
Do the multiplications in \left(1+x\right)\left(x+1\right)+\left(1-x\right)\left(-x+1\right).
\frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)}+2
Combine like terms in 1+x+x^{2}+x+1-x+x^{2}-x.
\frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)}+\frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}.
\frac{2+2x^{2}+2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}
Since \frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)} and \frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{2+2x^{2}-2x^{2}+2x-2x+2}{\left(x+1\right)\left(-x+1\right)}
Do the multiplications in 2+2x^{2}+2\left(x+1\right)\left(-x+1\right).
\frac{4}{\left(x+1\right)\left(-x+1\right)}
Combine like terms in 2+2x^{2}-2x^{2}+2x-2x+2.
\frac{4}{-x^{2}+1}
Expand \left(x+1\right)\left(-x+1\right).
\frac{\left(1+x\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}+2
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1+x}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1-x}{1+x} times \frac{-x+1}{-x+1}.
\frac{\left(1+x\right)\left(x+1\right)+\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}+2
Since \frac{\left(1+x\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{1+x+x^{2}+x+1-x+x^{2}-x}{\left(x+1\right)\left(-x+1\right)}+2
Do the multiplications in \left(1+x\right)\left(x+1\right)+\left(1-x\right)\left(-x+1\right).
\frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)}+2
Combine like terms in 1+x+x^{2}+x+1-x+x^{2}-x.
\frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)}+\frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}.
\frac{2+2x^{2}+2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}
Since \frac{2+2x^{2}}{\left(x+1\right)\left(-x+1\right)} and \frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{2+2x^{2}-2x^{2}+2x-2x+2}{\left(x+1\right)\left(-x+1\right)}
Do the multiplications in 2+2x^{2}+2\left(x+1\right)\left(-x+1\right).
\frac{4}{\left(x+1\right)\left(-x+1\right)}
Combine like terms in 2+2x^{2}-2x^{2}+2x-2x+2.
\frac{4}{-x^{2}+1}
Expand \left(x+1\right)\left(-x+1\right).