Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\frac{1-i}{1+i}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{2i}{2}-\frac{1-i}{1+i}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
i-\frac{1-i}{1+i}
Divide 2i by 2 to get i.
i-\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
i-\frac{-2i}{2}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
i+i
Divide -2i by 2 to get -i.
2i
Add i and i to get 2i.
Re(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\frac{1-i}{1+i})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{2i}{2}-\frac{1-i}{1+i})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(i-\frac{1-i}{1+i})
Divide 2i by 2 to get i.
Re(i-\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(i-\frac{-2i}{2})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(i+i)
Divide -2i by 2 to get -i.
Re(2i)
Add i and i to get 2i.
0
The real part of 2i is 0.