Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+7i}{3-4i}
Calculate 2-i to the power of 2 and get 3-4i.
\frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+4i.
\frac{-25+25i}{25}
Do the multiplications in \frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
-1+i
Divide -25+25i by 25 to get -1+i.
Re(\frac{1+7i}{3-4i})
Calculate 2-i to the power of 2 and get 3-4i.
Re(\frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)})
Multiply both numerator and denominator of \frac{1+7i}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{-25+25i}{25})
Do the multiplications in \frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(-1+i)
Divide -25+25i by 25 to get -1+i.
-1
The real part of -1+i is -1.