Solve for x
x\geq \frac{33}{41}
Graph
Share
Copied to clipboard
3\left(1+3x\right)\geq 4x+36\left(1-x\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3+9x\geq 4x+36\left(1-x\right)
Use the distributive property to multiply 3 by 1+3x.
3+9x\geq 4x+36-36x
Use the distributive property to multiply 36 by 1-x.
3+9x\geq -32x+36
Combine 4x and -36x to get -32x.
3+9x+32x\geq 36
Add 32x to both sides.
3+41x\geq 36
Combine 9x and 32x to get 41x.
41x\geq 36-3
Subtract 3 from both sides.
41x\geq 33
Subtract 3 from 36 to get 33.
x\geq \frac{33}{41}
Divide both sides by 41. Since 41 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}