Evaluate
-\frac{61\sqrt{200}}{154}\approx -5.60175502
Share
Copied to clipboard
\frac{1.5-\frac{18}{2.8}\times \frac{0.23}{0.55}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Add 1 and 0.5 to get 1.5.
\frac{1.5-\frac{180}{28}\times \frac{0.23}{0.55}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Expand \frac{18}{2.8} by multiplying both numerator and the denominator by 10.
\frac{1.5-\frac{45}{7}\times \frac{0.23}{0.55}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Reduce the fraction \frac{180}{28} to lowest terms by extracting and canceling out 4.
\frac{1.5-\frac{45}{7}\times \frac{23}{55}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Expand \frac{0.23}{0.55} by multiplying both numerator and the denominator by 100.
\frac{1.5-\frac{207}{77}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Multiply \frac{45}{7} and \frac{23}{55} to get \frac{207}{77}.
\frac{-\frac{183}{154}}{\sqrt{7\times 10^{-3}\times \frac{18}{2.8}}}
Subtract \frac{207}{77} from 1.5 to get -\frac{183}{154}.
\frac{-\frac{183}{154}}{\sqrt{7\times \frac{1}{1000}\times \frac{18}{2.8}}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{-\frac{183}{154}}{\sqrt{\frac{7}{1000}\times \frac{18}{2.8}}}
Multiply 7 and \frac{1}{1000} to get \frac{7}{1000}.
\frac{-\frac{183}{154}}{\sqrt{\frac{7}{1000}\times \frac{180}{28}}}
Expand \frac{18}{2.8} by multiplying both numerator and the denominator by 10.
\frac{-\frac{183}{154}}{\sqrt{\frac{7}{1000}\times \frac{45}{7}}}
Reduce the fraction \frac{180}{28} to lowest terms by extracting and canceling out 4.
\frac{-\frac{183}{154}}{\sqrt{\frac{9}{200}}}
Multiply \frac{7}{1000} and \frac{45}{7} to get \frac{9}{200}.
\frac{-\frac{183}{154}}{\frac{\sqrt{9}}{\sqrt{200}}}
Rewrite the square root of the division \sqrt{\frac{9}{200}} as the division of square roots \frac{\sqrt{9}}{\sqrt{200}}.
\frac{-\frac{183}{154}}{\frac{3}{\sqrt{200}}}
Calculate the square root of 9 and get 3.
\frac{-\frac{183}{154}}{\frac{3}{10\sqrt{2}}}
Factor 200=10^{2}\times 2. Rewrite the square root of the product \sqrt{10^{2}\times 2} as the product of square roots \sqrt{10^{2}}\sqrt{2}. Take the square root of 10^{2}.
\frac{-\frac{183}{154}}{\frac{3\sqrt{2}}{10\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{3}{10\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-\frac{183}{154}}{\frac{3\sqrt{2}}{10\times 2}}
The square of \sqrt{2} is 2.
\frac{-\frac{183}{154}}{\frac{3\sqrt{2}}{20}}
Multiply 10 and 2 to get 20.
\frac{-183\times 20}{154\times 3\sqrt{2}}
Divide -\frac{183}{154} by \frac{3\sqrt{2}}{20} by multiplying -\frac{183}{154} by the reciprocal of \frac{3\sqrt{2}}{20}.
\frac{-61\times 10}{77\sqrt{2}}
Cancel out 2\times 3 in both numerator and denominator.
\frac{-61\times 10\sqrt{2}}{77\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-61\times 10}{77\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-61\times 10\sqrt{2}}{77\times 2}
The square of \sqrt{2} is 2.
\frac{-610\sqrt{2}}{77\times 2}
Multiply -61 and 10 to get -610.
\frac{-610\sqrt{2}}{154}
Multiply 77 and 2 to get 154.
-\frac{305}{77}\sqrt{2}
Divide -610\sqrt{2} by 154 to get -\frac{305}{77}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}