Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+\sqrt{5}}{2+\frac{5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{1+\sqrt{5}}{2+\frac{5\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{1+\sqrt{5}}{2+\sqrt{5}}
Cancel out 5 and 5.
\frac{\left(1+\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}
Rationalize the denominator of \frac{1+\sqrt{5}}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
\frac{\left(1+\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
\frac{\left(1+\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
-\left(1+\sqrt{5}\right)\left(2-\sqrt{5}\right)
Anything divided by -1 gives its opposite.
-\left(2-\sqrt{5}+2\sqrt{5}-\left(\sqrt{5}\right)^{2}\right)
Apply the distributive property by multiplying each term of 1+\sqrt{5} by each term of 2-\sqrt{5}.
-\left(2+\sqrt{5}-\left(\sqrt{5}\right)^{2}\right)
Combine -\sqrt{5} and 2\sqrt{5} to get \sqrt{5}.
-\left(2+\sqrt{5}-5\right)
The square of \sqrt{5} is 5.
-\left(-3+\sqrt{5}\right)
Subtract 5 from 2 to get -3.
-\left(-3\right)-\sqrt{5}
To find the opposite of -3+\sqrt{5}, find the opposite of each term.
3-\sqrt{5}
The opposite of -3 is 3.