Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{31}\right)\left(1+\sqrt{31}\right)}{\left(1-\sqrt{31}\right)\left(1+\sqrt{31}\right)}
Rationalize the denominator of \frac{1+\sqrt{31}}{1-\sqrt{31}} by multiplying numerator and denominator by 1+\sqrt{31}.
\frac{\left(1+\sqrt{31}\right)\left(1+\sqrt{31}\right)}{1^{2}-\left(\sqrt{31}\right)^{2}}
Consider \left(1-\sqrt{31}\right)\left(1+\sqrt{31}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{31}\right)\left(1+\sqrt{31}\right)}{1-31}
Square 1. Square \sqrt{31}.
\frac{\left(1+\sqrt{31}\right)\left(1+\sqrt{31}\right)}{-30}
Subtract 31 from 1 to get -30.
\frac{\left(1+\sqrt{31}\right)^{2}}{-30}
Multiply 1+\sqrt{31} and 1+\sqrt{31} to get \left(1+\sqrt{31}\right)^{2}.
\frac{1+2\sqrt{31}+\left(\sqrt{31}\right)^{2}}{-30}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{31}\right)^{2}.
\frac{1+2\sqrt{31}+31}{-30}
The square of \sqrt{31} is 31.
\frac{32+2\sqrt{31}}{-30}
Add 1 and 31 to get 32.