Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+5}{\sqrt{3}+\sqrt{5}}
Calculate the square root of 25 and get 5.
\frac{6}{\sqrt{3}+\sqrt{5}}
Add 1 and 5 to get 6.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}
Rationalize the denominator of \frac{6}{\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{5}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
-3\left(\sqrt{3}-\sqrt{5}\right)
Divide 6\left(\sqrt{3}-\sqrt{5}\right) by -2 to get -3\left(\sqrt{3}-\sqrt{5}\right).
-3\sqrt{3}+3\sqrt{5}
Use the distributive property to multiply -3 by \sqrt{3}-\sqrt{5}.