Evaluate
\frac{13312}{5}=2662.4
Factor
\frac{2 ^ {10} \cdot 13}{5} = 2662\frac{2}{5} = 2662.4
Share
Copied to clipboard
\frac{1+2}{4-\frac{1}{4}}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Divide 4 by 2 to get 2.
\frac{3}{4-\frac{1}{4}}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Add 1 and 2 to get 3.
\frac{3}{\frac{16}{4}-\frac{1}{4}}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Convert 4 to fraction \frac{16}{4}.
\frac{3}{\frac{16-1}{4}}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Since \frac{16}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{\frac{15}{4}}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Subtract 1 from 16 to get 15.
3\times \frac{4}{15}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Divide 3 by \frac{15}{4} by multiplying 3 by the reciprocal of \frac{15}{4}.
\frac{3\times 4}{15}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Express 3\times \frac{4}{15} as a single fraction.
\frac{12}{15}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Multiply 3 and 4 to get 12.
\frac{4}{5}\times \frac{5+\frac{2}{\left(\frac{1}{2}\right)^{2}}}{\left(\frac{1}{4}\right)^{4}}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{4}{5}\times \frac{5+\frac{2}{\frac{1}{4}}}{\left(\frac{1}{4}\right)^{4}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{4}{5}\times \frac{5+2\times 4}{\left(\frac{1}{4}\right)^{4}}
Divide 2 by \frac{1}{4} by multiplying 2 by the reciprocal of \frac{1}{4}.
\frac{4}{5}\times \frac{5+8}{\left(\frac{1}{4}\right)^{4}}
Multiply 2 and 4 to get 8.
\frac{4}{5}\times \frac{13}{\left(\frac{1}{4}\right)^{4}}
Add 5 and 8 to get 13.
\frac{4}{5}\times \frac{13}{\frac{1}{256}}
Calculate \frac{1}{4} to the power of 4 and get \frac{1}{256}.
\frac{4}{5}\times 13\times 256
Divide 13 by \frac{1}{256} by multiplying 13 by the reciprocal of \frac{1}{256}.
\frac{4}{5}\times 3328
Multiply 13 and 256 to get 3328.
\frac{4\times 3328}{5}
Express \frac{4}{5}\times 3328 as a single fraction.
\frac{13312}{5}
Multiply 4 and 3328 to get 13312.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}