Solve for y (complex solution)
y=-\frac{2x^{2}}{2zx^{2}-1}
\left(x\neq 0\text{ and }x\neq -\left(2z\right)^{-\frac{1}{2}}\text{ and }x\neq \left(2z\right)^{-\frac{1}{2}}\right)\text{ or }\left(x\neq 0\text{ and }z=0\right)
Solve for y
y=-\frac{2x^{2}}{2zx^{2}-1}
\left(x\neq 0\text{ and }|x|\neq \frac{1}{\sqrt{2z}}\right)\text{ or }\left(x\neq 0\text{ and }z\leq 0\right)
Solve for x (complex solution)
x=-\frac{i\left(-yz-1\right)^{-\frac{1}{2}}\sqrt{2y}}{2}
x=\frac{i\left(-yz-1\right)^{-\frac{1}{2}}\sqrt{2y}}{2}\text{, }y\neq 0\text{ and }\left(z=0\text{ or }y\neq -\frac{1}{z}\right)
Solve for x
x=\frac{\sqrt{\frac{2y}{yz+1}}}{2}
x=-\frac{\sqrt{\frac{2y}{yz+1}}}{2}\text{, }\left(y<-\frac{1}{z}\text{ and }y<0\text{ and }z>0\right)\text{ or }\left(y>-\frac{1}{z}\text{ and }y<0\text{ and }z<0\right)\text{ or }\left(y>-\frac{1}{z}\text{ and }y>0\text{ and }z>0\right)\text{ or }\left(z=0\text{ and }y>0\right)\text{ or }\left(y<-\frac{1}{z}\text{ and }y>0\text{ and }z<0\right)
Share
Copied to clipboard
2x^{2}=y-z\times 2yx^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2yx^{2}, the least common multiple of y,2x^{2}.
2x^{2}=y-2zyx^{2}
Multiply -1 and 2 to get -2.
y-2zyx^{2}=2x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(1-2zx^{2}\right)y=2x^{2}
Combine all terms containing y.
\frac{\left(1-2zx^{2}\right)y}{1-2zx^{2}}=\frac{2x^{2}}{1-2zx^{2}}
Divide both sides by 1-2zx^{2}.
y=\frac{2x^{2}}{1-2zx^{2}}
Dividing by 1-2zx^{2} undoes the multiplication by 1-2zx^{2}.
y=\frac{2x^{2}}{1-2zx^{2}}\text{, }y\neq 0
Variable y cannot be equal to 0.
2x^{2}=y-z\times 2yx^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2yx^{2}, the least common multiple of y,2x^{2}.
2x^{2}=y-2zyx^{2}
Multiply -1 and 2 to get -2.
y-2zyx^{2}=2x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(1-2zx^{2}\right)y=2x^{2}
Combine all terms containing y.
\frac{\left(1-2zx^{2}\right)y}{1-2zx^{2}}=\frac{2x^{2}}{1-2zx^{2}}
Divide both sides by 1-2zx^{2}.
y=\frac{2x^{2}}{1-2zx^{2}}
Dividing by 1-2zx^{2} undoes the multiplication by 1-2zx^{2}.
y=\frac{2x^{2}}{1-2zx^{2}}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}